PieAPP: Perceptual Image-Error Assessment through Pairwise Preference.
🌏 Source
Available at https://arxiv.org/abs/1806.02067, source code available at: prashnani/PerceptualImageError.
The new metric: PieAPP, correlates well with human opinion, and performs almost 3 times better than existing metrics.
Dataset: The paper doesn't explicitly convert the human preference into a quality score. Instead, they simply label the pairs by the percentage of people who preferred image
Pairwise-learning framework: The framework trains an error-estimation function using the probability labels in the dataset.
---------------------
| Distorted Image A | \
--------------------- \
\
--------------------- \ | Error estimation function #1 | | Perceptual Error Score: A |
| Reference Image R | -->-- |--------- IDENTICAL ----------| -->-- |---------------------------|
--------------------- / | Error estimation function #2 | | Perceptual Error Score: B |
/
--------------------- /
| Distorted Image B | /
---------------------
Then the errors of
Once the PieAPP (described above) is trained using the pairwise probabilities, we can use the learned error-estimation function on a single image